Optische Technologien

  • Montage photonisch integrierter Systeme
    Der Forschungszusammenschluss des Exzellenzclusters PhoenixD verfolgt das Ziel, konventionelle und komplexe Hochleistungsoptiken in intelligenten, miniaturisierten und adaptiven optischen Systemen zu integrieren. Hierbei forscht das match an neuartigen Konzepten und Prozessen zur Präzisionsmontage von optischen Systemen.
    Team: Niklas Terei
    Jahr: 2021
    Förderung: DFG (PhoenixD)
  • Self-Assembly
    Der Forschungsbereich Self-Assembly befasst sich mit der Entwicklung von selbst montierenden bzw. selbst positionierenden Systemen. Durch das spezifische Design entsteht ein energetisches Potentialfeld, das auf die Bauteile einwirkt und an die Montageposition zieht. Eine Handhabung der einzelnen Komponenten ist nicht mehr zwingend erforderlich, was neue Anwendungsfälle, wie z.B. berührungslose Montage, ermöglicht.
    Team: Martin Stucki
    Jahr: 2019
    Förderung: DFG (PhoenixD)
    Self-Assembly_Chip Self-Assembly_Chip

SFB Regeneration

  • Strategien für die piezoaktorisch unterstützte Demontage von Schraubverbindungen
    Der Sonderforschungsbereich (SFB) 871 „Regeneration komplexer Investitionsgüter“ erforscht seit 2010 am Beispiel von zivilen Flugzeugtriebwerken die wissenschaftlichen Grundlagen der Regeneration. Die Motivation ist dabei, wie komplexe Bauteile effizient und ressourcenschonend erhalten und repariert werden können. Das match fokussiert und entwickelt im Transferprojekt T16 neuartige Strategien zur schonenden Demontage am Beispiel von Schraubverbindungen.
    Team: Richard Blümel
    Jahr: 2023
    Förderung: DFG

Entwicklung und Optimierung von Handhabungs- und Montageprozessen

  • Strategien für die piezoaktorisch unterstützte Demontage von Schraubverbindungen
    Der Sonderforschungsbereich (SFB) 871 „Regeneration komplexer Investitionsgüter“ erforscht seit 2010 am Beispiel von zivilen Flugzeugtriebwerken die wissenschaftlichen Grundlagen der Regeneration. Die Motivation ist dabei, wie komplexe Bauteile effizient und ressourcenschonend erhalten und repariert werden können. Das match fokussiert und entwickelt im Transferprojekt T16 neuartige Strategien zur schonenden Demontage am Beispiel von Schraubverbindungen.
    Team: Richard Blümel
    Jahr: 2023
    Förderung: DFG
  • Automatisierte Prozesskette für die flexible Produktion von Photovoltaikmodulen (A3P)
    Für dieses Projekt wird ein Lastenheft für die automatisierte Handhabung aller Materialien für die flexible Modulherstellung erstellt. Es werden Konzepte für die Handhabung erstellt, die einzelnen Schritte aufeinander abgestimmt und im Hinblick auf Taktzeiten und Kosten optimiert. Die Erstellung eines digitalen Zwillings der Prozesskette stellt die Grundlage für zukünftige Projekte dar. Ein Hauptpunkt liegt auf der Untersuchung der Handhabungsprozesse der Glaselemente und der Laminiationsfolien.
    Team: Torge Kolditz
    Jahr: 2023
    Förderung: EFZN
  • Montage photonisch integrierter Systeme
    Der Forschungszusammenschluss des Exzellenzclusters PhoenixD verfolgt das Ziel, konventionelle und komplexe Hochleistungsoptiken in intelligenten, miniaturisierten und adaptiven optischen Systemen zu integrieren. Hierbei forscht das match an neuartigen Konzepten und Prozessen zur Präzisionsmontage von optischen Systemen.
    Team: Niklas Terei
    Jahr: 2021
    Förderung: DFG (PhoenixD)
  • Montagestation auf Basis eines magnetischen Levitationssystems
    Um eine kosteneffiziente Fertigung optischer Komponenten bzw. integrierter optischer Systeme zu ermöglichen, verfolgt PhoenixD den Ansatz eine Produktionsmatrix auf Basis eines Levitations-Transportsystems umzusetzen. Ziel ist es, die Mover neben dem Transport zwischen den Fertigungsstationen ebenfalls als funktionale Einheit innerhalb der Stationen zu nutzen. Das match erforscht und entwickelt hierfür eine integrierte Montagestation.
    Team: Lars Binnemann
    Jahr: 2021
    Förderung: DFG (PhoenixD)
  • SFB 1368: Klebstoffbasierte Montageprozesse in XHV-adäquater Atmosphäre
    Das match befasst sich im Rahmen des Sonderforschungsbereiches 1368 „Sauerstofffreie Produktion“ mit der klebstoffbasierten Montagetechnik in technisch sauerstofffreier Atmosphäre. Das Ziel des Teilprojekts ist ein Erkenntnisgewinn über technische Eigenschaften von Klebverbindungen, die in sauerstofffreier Atmosphäre und mit desoxidierten Fügepartnern hergestellt wurden.
    Team: Sandra Gerland, Rolf Wiemann
    Jahr: 2020
    Förderung: DFG
  • Formvariable Handhabung schmiedewarmer Hybridbauteile im Rahmen des Tailored Forming
    Der SFB 1153 „Tailored Forming“ setzt sich zum Ziel, die Potentiale für hybride Massivbauteile auf Basis einer neuartigen Prozesskette zu erschließen und die dafür notwendigen fertigungstechnischen Verfahren zu entwickeln. Das match fokussiert sich dabei auf die Bereitstellung von Funktionsmodulen zur formvariablen und funktionsintegrierten Handhabung von Bauteilen mit Temperaturen von bis zu 1250 °C.
    Team: Caner Ince
    Jahr: 2019
    Förderung: DFG
  • Self-Assembly
    Der Forschungsbereich Self-Assembly befasst sich mit der Entwicklung von selbst montierenden bzw. selbst positionierenden Systemen. Durch das spezifische Design entsteht ein energetisches Potentialfeld, das auf die Bauteile einwirkt und an die Montageposition zieht. Eine Handhabung der einzelnen Komponenten ist nicht mehr zwingend erforderlich, was neue Anwendungsfälle, wie z.B. berührungslose Montage, ermöglicht.
    Team: Martin Stucki
    Jahr: 2019
    Förderung: DFG (PhoenixD)
    Self-Assembly_Chip Self-Assembly_Chip
  • PhoenixD
    Das Exzellenzcluster PhoenixD vereint verschiedene Fachbereiche aus Optikdesign, Optiksimulation und der Optikfertigung, mit dem Ziel, intelligente, kompakte und adaptive optische Systeme zu entwickelt. Das match übernimmt in diesem Zusammenhang Präzisionsmontageaufgaben und befasst sich intensiver mit der voll prozessintegrierten Bauteilausrichtung via Self-Assembly sowie der Entwicklung neuartiger Montagekonzepte.
    Team: Martin Stucki, Rolf Wiemann, Niklas Terei, Lars Binnemann
    Jahr: 2019
    Förderung: DFG
  • Bauteilschonende und anpassungsfähige Demontage
    Eine „bauteilschonende und anpassungsfähige Demontage“ ist Bestandteil des DFG-geförderten Sonderforschungsbereiches 871 „Regeneration komplexer Investitionsgüter“. Dabei leitet die Demontage den Regenerationsprozess eines Flugzeugtriebwerks ein. Durch eine Automatisierung der Demontageprozesse und die Identifizierung der Prozessgrößen wird eine bauteilschonende Demontage trotz charakteristischer Unsicherheiten der Demontage ermöglicht.
    Team: Richard Blümel
    Jahr: 2018
    Förderung: DFG
  • Präzisionsmontage
    Egal ob Sensoren, Herzschrittmacher oder Uhrwerke: Überall wo Teile sehr genau montiert werden müssen, stoßen konventionelle Roboter und entsprechende Peripherie an ihre Grenzen. Das match forscht in diesem Bereich an neuen Lösungen und Strategien, um zuverlässige und wirtschaftliche Präzisionsmontageprozesse umzusetzen.
    Team: Martin Stucki, Rolf Wiemann, Niklas Terei, Lars Binnemann
    Jahr: 2018
    Förderung: Grundfinanzierung
  • Kollaborative Montage von Mensch und Maschine
    Die Montage stellt in der Prozesskette den letzten Schritt der Wertschöpfung dar und spielt somit eine wesentliche Rolle in der Wertschöpfungskette. Die hohen Kosten- und Zeitanteile der Montage an der gesamten Produktion lassen ein erhebliches Rationalisierungspotenzial von der Montageplanung und -vorbereitung bis zur Ausführung der Montage erkennen. Aus diesem Grund entwickelt das match kollaborative Montagesysteme und -prozesse.
    Team: Sebastian Blankemeyer
    Jahr: 2015
  • Handhabung von Solarzellen
    Ziel des Projektes ist die anwendungsorientierte Untersuchung von Parallelrobotern zur hochdynamischen und schonenden Handhabung von Solarzellen. Dabei sollen alternative parallelkinematische Strukturen zur Handhabung von Solarzellen konzipiert und die Funktionsmuster des SFB 562 für diese industrielle Aufgabe bezüglich ihrer Einsatzfähigkeit untersucht werden.
    Team: Jan Schmitt
    Jahr: 2011
    Förderung: DFG

Maschinenkonzepte und Systemintegration

  • Aktive bildbasierte Zuführung von Kleinteilen mithilfe aerodynamischer Schikanen
    Ein entscheidender Baustein der automatisierten Montage ist die Zuführeinrichtung, welche dem Handhabungsgerät (z.B. Industrieroboter) die zu montierenden Bauteile in einer definierten Position und Orientierung zur Verfügung stellt. In diesem Projekt werden Methoden zur flexiblen und effizienten Zuführung von Bauteilen mithilfe von Bildverarbeitung, KI-Methoden und aerodynamischen Orientierungsmodulen erforscht.
    Team: Torge Kolditz
    Jahr: 2024
    Förderung: DFG
  • IT-Security beim Einsatz von 5G im Ökosystem Produktion (5GProSec)
    Ziel des Forschungsprojekts ist die systematische Erfassung und Beseitigung von möglichen Angriffsvektoren und unbeabsichtigten Störungen beim Einsatz von 5G speziell in der Produktion. Im Fokus stehen dabei sowohl die technischen als auch die nicht-technischen Aspekte von Angriffsvektoren. Die entwickelten Methoden sollen Hürden für den Einsatz von 5G in Unternehmen senken und Sicherheitsbedenken ausräumen.
    Team: Henrik Lurz
    Jahr: 2023
    Förderung: BSI
  • SFB 1153: Flexible Prozesskette zur ressourceneffizienten Fertigung von Tailored-Forming-Bauteilen
    Im Rahmen des Sonderforschungsbereichs 1153 wurden neuartige Auslegungs-, Füge-, Umform-, Nachbearbeitungs- und Prüfverfahren für die Herstellung hybrider massiver Hochleistungsbauteile entwickelt und realisiert. Diese Einzelprozesse gilt es in diesem Teilprojekt zu einem automatisierten Gesamtprozess zu verketten, um die Funktionalität der Prozesse in einer durchgehenden Prozesskette zu validieren sowie reproduzierbare Proben herzustellen.
    Team: Sebastian Blankemeyer
    Jahr: 2023
    Förderung: DFG
  • iAero
    In Zusammenarbeit mit dem IFA (Institut für Fabrikanlagen und Logistik) soll in diesem Projekt eine aerodynamische Zuführanlage weiterentwickelt werden, damit Bauteile flexibel und mit hoher Stückzahl einem Folgeprozess zugeführt werden können. Basierend auf den Geometriedaten der Bauteile und einem Simulationsmodell des Orientierungsprozesses, soll die Anlage selbstständig die optimalen Einstellparameter identifizieren, einstellen und anwenden.
    Team: Torge Kolditz
    Jahr: 2017
    Förderung: DFG
  • Unteraktuierte Handhabungssysteme
    Im Bereich „Unteraktuierte mechatronische Systeme“ werden Montagesysteme erforscht, die weniger Stellantriebe als Bewegungsfreiheiten besitzen. Der grundlegende Gedanke ist, u.a. den konstruktiven Aufwand sowie die Kosten einer konventionellen vollständigen Aktuierung gleichwertiger Systeme zu umgehen. Zwei grundlegende Themen sind hierbei die strukturellen Anforderungen an die Unteraktuierung sowie die Regelung des typischerweise stark nichtlinearen Systemverhaltens.
    Team: Tobias Recker
    Jahr: 2017
  • Kühlkonzepte auf Basis elektrokalorischer Materialien
    Elektrokalorische Materialien gehören neben magneto-, elasto- und barokalorischen Materialien zur Gruppe der aktiven Materialien und besitzen die Fähigkeit, sich unter Einwirkung eines elektrischen Feldes zu erwärmen bzw. abzukühlen. Das Ziel ist es hierbei, möglichst effiziente Systeme bei möglichst kompakter Bauweise und geringem Gewicht zu realisieren.
    Team: Phillip Blumenthal
    Jahr: 2012
    Förderung: DFG
  • Aktive Werkzeugaufnahme
    Das Forschungsziel ist die Steigerung der Produktivität von Werkzeugmaschinen mit rotierender Werkzeugaufnahme durch aktives Beeinflussen der Maschinenstruktur. Der begrenzende Faktor für die Leistung einer Werkzeugmaschine ist das dynamische und statische Verhalten. Werden Werkzeugmaschinen in den Grenzbereichen betrieben, kann es zu nicht gewollten Maschinenschwingungen kommen. Diese führen dazu, dass entweder die Bearbeitung der Werkstücke nicht beendet werden kann oder die gewählten Parameterwerte nicht die volle Maschinenleistung ausreizen.
    Team: Alexander Boldering
    Jahr: 2011
    Förderung: DFG

Robotergestützte Montage- und Handhabungsvorgänge

  • Digitale Planung und automatisierte Produktion von gebäudeintegrierter Photovoltaik (DIGI-PV)
    Das Ziel des Projektes DIGI-PV ist die Reduktion von Hemmnissen für einen großflächigen Einsatz der PV-Technologie zur Erschließung von deutlich mehr Fassadenflächen für die energetische Nutzung. Hierfür werden automatisierte Prozesse und Werkzeuge entwickelt, die Planende, Produzierende und Nutzende befähigen, effiziente und kostengünstige Prozesse umzusetzen und entlang mehrerer Phasen der Produktlebensdauer zu unterstützen.
    Team: Sebastian Blankemeyer, Jessica Schönburg
    Jahr: 2023
    Förderung: BMWK
  • TRR 277 Additive Manufacturing in Construction
    Während die Produktivität in der Fertigungsindustrie in den meisten Bereichen einen linearen Zuwachs verweisen kann, stagniert dieser Wert im Bauwesen seit etwa 50 Jahren. Die Ursache liegt im hohen manuellen Aufwand zur Erzeugung komplexer Schalungselemente. Ziel des TRR 277 ist es, dies durch den Einsatz additiver Fertigungsverfahren zu vermeiden. Dabei wird ein übergreifender Ansatz unter Berücksichtigung von Planung, Fertigung und Montage verfolgt.
    Team: Lukas Lachmayer, Hauke Heeren
    Jahr: 2020
    Förderung: DFG
  • Autonome mobile Robotik
    Aktuell erfordert die Montage großer Produkte und Anlagen den Einsatz komplexer und sperriger Montagegeräte, die nur an zentralen Produktionsstandorten installiert und betrieben werden können. Die Zukunftsvision ist der Einsatz eines Verbundes autonomer mobiler Roboter, die direkt am Zielort die Montage oder Fertigung übernehmen. Diese Lösung erfordert eine koordinierte Zusammenarbeit verschieden großer Roboter.
    Team: Tobias Recker, Henrik Lurz
    Jahr: 2018
  • Wirtschaftliche Fertigung belastungsgerechter FVK/Metall-Verbunde
    In Zusammenarbeit mit dem Institut für Umformtechnik und Umformmaschinen (IFUM) soll in diesem Projekt eine wirtschaftliche Fertigung belastungsgerechter FVK/Metall-Verbunde entwickelt und optimiert werden. Dabei sollen lokale FVK-Häufungen zwischen zwei Stahlblechen angeordnet und fixiert werden. Anschließend wird der Lagenaufbau in eine zweistufige Presse zur Imprägnierung und Umformung übergeben.
    Team: Christoph Schumann
    Jahr: 2018
    Förderung: EFB/AiF
  • Methoden zur Automatisierung von Handhabungsprozessen unter kryogenen Umgebungsbedingungen
    Im Rahmen des von der DFG geförderten Projektes „Methoden zur Automatisierung von Handhabungsprozessen unter kryogenen Umgebungsbedingungen“ werden am match in Kooperation mit dem Fraunhofer-Institut für Biomedizinische Technik (IBMT, Sulzbach/Saar) Ansätze zur Automatisierung der Handhabungsprozesse in Biobanken für die Kryokonservierung im Temperaturbereich unterhalb von -130°C erforscht.
    Team: Philipp Jahn
    Jahr: 2017
    Förderung: DFG
  • SafeMate
    Ziel des Forschungsvorhabens SafeMate ist es, kollaborative Montagesysteme in branchenübergreifenden Anwendungsfällen umzusetzen und hierauf aufbauend allgemeingültige Strategien und Konzepte für die Einführung und Gestaltung solcher Systeme zu entwickeln. Diese generellen Strategien sollen in einem Leitfaden zusammengefasst werden, der Unternehmen Orientierungshilfen im Sinne von Handlungs- und Entscheidungskorridoren bei der Gestaltung von kollaborativen Montagesystemen geben soll.
    Team: Tobias Recker, Sebastian Blankemeyer
    Jahr: 2017
    Förderung: BMBF
  • Generative Fertigung im Bauwesen
    Die Fertigung von Betonbauteilen im Bauwesen folgt seit jeher dem traditionellen manuellen Prozess, bei dem Gebäude „Stein auf Stein“ errichtet und die verwendeten Betonelemente durch eine aufwendige Holzschalung hergestellt werden müssen. Zwar verfügt das Bauwesen über leistungsstarke Berechnungssoftware und Hochleistungsbetone, der Herstellungsprozess jedoch ist aufwendig und nicht automatisiert. An dieser Stelle setzt das oben genannte Projekt an. Das Ziel ist es, eine vollautomatisierte Fertigungszelle auf Roboterbasis zu nutzen, um generativ frei geformte Betonbauteile für den Hochbau herzustellen.
    Team: Serhat Ibrahim
    Jahr: 2016
    Förderung: MWK
  • Orientierungseinheiten mit Seilzugaktorik
    Parallelroboter sind aufgrund ihrer hohen Taktraten sowie ihrer Positioniergenauigkeiten vor allem für Pick&Place-Operationen geeignet. Jedoch haben die parallel-kinematischen Strukturen einen entscheidenden Nachteil: Sie können Objekte exakt positionieren, aber nur eingeschränkt im Raum orientieren. Bestehende Montagezellen werden hierdurch unflexibel und lassen sich nur schwer an neue Prozesse anpassen. Am match entwickeln wir strukturelle Erweiterungen für Parallelroboter, mit denen Objekte beliebig im dreidimensionalen Raum orientiert werden können.
    Team: Daniel Krebs
    Jahr: 2016
  • ProVorPlus (Funktionsintegrierte Prozesstechnologie zur Vorkonfektionierung und Bauteilherstellung von FVK-Metall-Hybriden)
    Um das wirtschaftliche Potenzial des FVK-basierten Leichtbaus zu steigern, wird die Herstellung von Komponenten mit einer bauteilintegrierten Hybridisierung angestrebt. Hierbei werden unterschiedliche Materialien mit verschiedenen Eigenschaften zu einem Bauteil kombiniert, wodurch eine Funktionalisierung (mechanisch, thermisch und elektrisch) der einzelnen Werkstoffe ermöglicht wird.
    Team: Christopher Bruns
    Jahr: 2015
    Förderung: BMBF
  • Robotergestützte kooperative Handhabung und Montage
    Die Handhabung und Montage von nachgiebigen und großskaligen Bauteilen ist gerade mit Blick auf die Faserverbundwerkstoffproduktion ein wichtiger Schritt in der Prozesskette. Die Probleme, die beim Handhaben von flexiblen Bauteilen auftreten können, sind ihre Formveränderung, die zu einer undefinierten Ablageposition führen können. Des Weiteren ist oftmals ein Greifen mit herkömmlichen Greifern nicht möglich.
    Team: Sebastian Blankemeyer
    Jahr: 2015
  • 3C-PKM
    Das Ziel des Projekts "Entwicklung einer parallelkinematischen Struktur für den 3C Anwendungsbereich" ist die Analyse und Weiterentwicklung der Kinematik eines Parallelroboters mit Delta-Struktur, um den Anforderungen der Handhabungs- und Montageaufgaben in der Elektronikmontage gerecht zu werden. Hierzu wird der Workflow eines möglichen Entwicklungsprozesses erarbeitet und relevante Randbedingungen sowie Zielparameter identifiziert.
    Team: Gunnar Borchert
    Jahr: 2012
    Förderung: DFG

Soft Material Robotic Systems

  • Aktive softrobotische Saugvorrichtung für den Tiefseeeinsatz
    Das match forscht in einer Kollaboration mit dem GEOMAR (Helmholtz-Zentrum für Ozeanforschung Kiel) an der Entwicklung eines softrobotischen Systems, das in der Tiefsee zur Entnahme von Sedimentproben zum Einsatz kommt. Um den aktuell verwendeten, hydraulisch aktuierten, Manipulator aus Titan zu ersetzten, soll ein möglichst leichgewichtiges, kostengünstiges und druckneutrales Aktuierungssystem entwickelt werden.
    Team: Jan Peters, Cora Maria Sourkounis
    Jahr: 2022
    Förderung: DFG
  • Kohärente Methodologie zur Modellierung und zum Entwurf weicher Roboter – Die Soft Material Robotics Toolbox (SMaRT)
    Roboter aus weichen Materialien bieten eine hohe Flexibilität. Die Nachgiebigkeit des Materials führt zu einer hohen Anpassungsfähigkeit, die klassische Robotersysteme nicht bieten. Im Projekt SMaRT („Soft Material Robotics Toolbox“) forscht das match zusammen mit dem Institut für mechatronische Systeme (imes) und dem Institut für Dynamik und Schwingungen (IDS) an einer kohärenten Methodologie zur Modellierung und zum Entwurf weicher Roboter.
    Team: Mats Wiese
    Jahr: 2019
    Förderung: DFG
  • Soft Material Robotic Systems
    Soft Material Robotic Systems sind flexible Roboter aus weichen Materialien wie Silikon oder Elastomeren. Im Gegensatz zu herkömmlichen Robotern können sie sich an komplexe Umgebungen anpassen und nutzen pneumatische, hydraulische oder chemische Aktuatoren für Bewegungen. Sie finden Anwendung in Bereichen wie medizinischer Rehabilitation, Lebensmittelproduktion und Unterwasserforschung.
    Team: Ditzia Susana Garcia Morales, Mats Wiese, Jan Peters, Cora Maria Sourkounis
    Jahr: 2019
    Förderung: DFG Schwerpunktprogramm